MQTT vs AMQP for IoT Communications: Head to Head

2023-10-25
关注

Illustration: © IoT For All

With the exponential growth of the Internet of Things (IoT), managing communication between devices and systems is growing in importance. IoT communication is made possible by message queuing protocols such as MQTT and AMQP that facilitate the exchange of information in a structured and efficient manner.

Two popular protocols powering the IoT are the MQTT protocol (Message Queuing Telemetry Transport) and AMQP (Advanced Message Queuing Protocol). Let’s explore each of these protocols in detail and explain their key differences and the factors to consider when choosing between the two.

Importance of Message Queuing Protocols

In IoT, devices ranging from simple sensors to complex machines need to communicate with each other and with central systems. These devices often operate in environments with constrained resources, such as low power or unreliable networks.

Message queuing protocols like MQTT, which is designed for such environments, enable these devices to communicate efficiently and reliably.

In distributed systems, components often need to exchange information while maintaining loose coupling. Protocols like AMQP, with its robust features and complex routing capabilities, provide a reliable means for this communication.

These protocols ensure that messages are delivered reliably, and the systems can scale and evolve independently.

What Is MQTT?

MQTT, short for Message Queuing Telemetry Transport, is a lightweight publish/subscribe messaging protocol. It was introduced by IBM in 1999.

Designed for constrained devices and low-bandwidth, high-latency, or unreliable networks, MQTT is perfect for machine-to-machine or IoT use cases where a small code footprint is required.

MQTT operates based on the publish/subscribe model. In this model, a producer, known as a publisher, creates messages, and a consumer, known as a subscriber, receives them.

The interaction between the publisher and subscriber is managed by a broker. The broker is responsible for distributing the messages from publishers to subscribers.

The simplicity of MQTT lies in its minimal protocol commands. It has only a handful of commands, making it easy to implement in various devices and systems.

Also, its quality-of-service levels allows for message delivery confirmation, ensuring that no message is lost in transmission. Let’s explore MQTT in more detail.

MQTT Transport and Framing

MQTT can use TCP, TLS, WebSocket, or QUIC as its transport layer, creating connections, establishing sessions, and transmitting messages reliably between clients and brokers.

MQTT frames consist of a 2-byte fixed header, a variable header, and a variable-length payload. The header contains information such as the packet type, quality of service level, remaining length, packet ID, and properties. The binary payload contains the actual message being transmitted.

MQTT defines 15 types of control packets based on the binary frames in the version 5.0 protocol specifications. Some of the common packets used to connect, publish and subscribe include CONNECT, CONACK, PUBLISH, PUBACK, and SUBSCRIBE.

MQTT QoS

MQTT supports three qualities of service for message delivery:

  • QoS0 “At most once”: Messages are delivered according to the best efforts of the operating environment; message loss can occur.
  • QoS1 “At least once”: Messages are assured to arrive, but duplicates can occur.
  • QoS2 “Exactly once”: Messages are assured to arrive exactly once.

MQTT Advantages and Disadvantages

Pros:

  • Simplicity: The simplest publish-subscribe design, easier to set up, develop, and manage.
  • Lightweight and Efficient: MQTT messages have only 2-type header overhead with low bandwidth usage making the protocol ideal for low-power, low-bandwidth devices.
  • Scalability: Scale to tens of millions of MQTT connections, topics, and subscriptions.
  • Reliable message delivery: Three Quality of Service levels to ensure reliable message delivery, even over unreliable networks.
  • Low latency: Near real-time message delivery with one-digit millisecond latency due to the simple topic-based pub/sub model.
  • Security: MQTT supports secure communications over TLS/SSL or QUIC and various authentication mechanisms using LDAP, JWT, PSK, and X.509 certificates.
  • Compatibility and Integration: MQTT can be integrated with many programming languages, operating systems, and software platforms.

Cons:

  • MQTT lacks store-and-forward queuing.

What is AMQP?

AMQP, Advanced Message Queuing Protocol, is a protocol that supports a wide range of messaging patterns and offers a robust set of features. It was created by J.P. Morgan Chase in 2003. It is designed for systems that require a high level of reliability and functionality.

Unlike MQTT, AMQP is a peer-to-peer protocol, meaning it supports direct communication between the producer and consumer.

AMQP uses a model where messages are sent to exchanges, which then route the messages to appropriate queues based on rules called bindings. The consumer then retrieves the message from the queue.

This model allows for complex routing and distribution strategies, making AMQP suitable for complex distributed systems.

The strength of AMQP lies in its extensive feature set. It supports a variety of message properties and delivery modes, including persistent messaging, which ensures the messages are not lost even if the broker restarts.

AMQP Exchange and Bindings

In AMQP, an exchange is like an email transfer agent that inspects email and decides on the basis of routing keys and tables. A routing key corresponds to an email with To:, Cc:, or Bcc: addresses, without server information (routing is internal within an AMQP server). A binding is like an entry in the email transfer agent’s routing table.

AMQP defines four types of exchanges:

  1. Direct (point-to-point): Messages are routed directly to the queue bound to the exchange.
  2. Fanout: Messages are routed to every queue bound to the exchange.
  3. Topic (publish-subscribe): Messages are routed to queues based on the routing key and the binding pattern to the exchange.
  4. Headers (publish-subscribe): Messages are routed to queues based on pattern matching of message headers.

AMQP Transport and Framing

AMQP is a binary protocol built on TCP/IP, where a reliable, persistent, stream-oriented connection is established between a client and a broker. Multiple channels can be opened on a single socket connection, allowing multiple streams of data to be transferred simultaneously.

AMQP frames in version 1.0 consist of an 8-byte fixed header, an optional extended header, and a variable-length binary payload. The fixed header contains information about the frame type, channel number, and size of the payload.

The payload contains the actual message being transmitted, along with any associated metadata.

AMQP Advantages and Disadvantages

Pros:

  • Store-and-forward queuing: AMQP supports store-and-forward queuing at the expense of some efficiency and additional complexity (compared to MQTT).
  • Flexible message routing: AMQP provides flexible message routing, including point-to-point, publish-subscribe, and fan-out.
  • Security: AMQP supports security measures such as TLS and SASL for encryption and authentication.
  • Ecosystem: AMQP has a large and mature ecosystem of open-source server implementations and client libraries for various programming languages.

Cons:

  • Complex: AMQP introduces many concepts in its model and can be complex and challenging to understand, set up, and manage.
  • Heavyweight: AMQP introduces multiplexing in its transport layer with “channels.” Each AMQP frame has a header overhead of 8 bytes.
  • Backward compatibility: The biggest problem of AMQP is that versions 0.9.1 and 1.0 are completely different, leading to more complexity in this solution space.
  • Scalability and performance: AMQP may have limited scalability and low performance in some use cases. This is due to its architecture, which imposes greater complexity and overhead compared to lightweight protocols like MQTT.

MQTT vs AMQP: Head-to-Head

The following table summarizes our comparison between AMQP and MQTT.

 AMQPMQTT
DefinitionAdvanced Message Queuing ProtocolMessage Queueing Telemetry Transport
OriginsInvented by JPMorgan Chase in 2003Invented by IBM in 1999
ArchitectureEBQ (Exchange-Binding-Queue)Topic-based Publish/Subscribe
Core ConceptsExchangesQueuesBindingsRouting KeysTopicsSubscriptions
Main Protocol Versions· 0.9.1 released in November 2008
· 1.0 released in October 2012
· 3.1.1 released in December 2015
· 5.0 released in March 2019
Messaging Paradigms  
Point-to-Point✅ (store-and-forward queues)Partial support
Publish/Subscribe
Fan-out✅ more scalable
Fan-in
Request/Reply✅ in version 5.0
Push/Pull
Transports  
TCP
TLS/SSL
WebSocket
QUIC
Framing  
Frame StructureFrames are divided into three distinct areas:
Fixed width frame header,
Variable width extended header,
Variable width frame body.
An MQTT Control Packet consists of up to three parts:
Fixed Header
Variable Header
Payload
Fix Header Size8 Bytes2 Bytes
Payload ContentBinaryBinary
Max Payload Size2GB256MB
Delivery  
QoS 0: At Most Once
QoS 1: At Least Once
QoS 2: Exactly Once
SecuritySSL/TLSSSL/TLS

Factors to Consider when Choosing

When faced with a decision between MQTT vs AMQP, there are several factors to consider.

Evaluation Based on Use Case Requirements

The choice between MQTT and AMQP largely depends on the use case requirements. If you are dealing with constrained devices or unreliable networks, MQTT with its lightweight nature might be the better option. If your use case requires complex routing and high reliability, then AMQP would be more suitable.

Evaluation Based on System Architecture

The system architecture also plays a role in the decision. MQTT’s simplicity makes it a good choice for systems with a clear and simple communication model. AMQP, with its flexibility and robust feature set, is better suited for complex systems with diverse communication needs.

Evaluation Based on Network Conditions

Network conditions are another critical factor. MQTT performs well in low-bandwidth, high-latency, or unreliable networks. AMQP, on the other hand, requires a reliable network connection due to its higher overhead.

Evaluation Based on Required Quality of Service

MQTT provides three levels of quality of service, allowing for flexibility in message delivery guarantees. AMQP, with its persistent messaging, ensures high reliability in message delivery.

Making Your Decision

Both MQTT and AMQP have their strengths and are suited for different scenarios. Understanding their key differences and evaluating your requirements against these differences will help you make an informed decision when choosing. Remember, the right choice depends on your specific needs and constraints.

Tweet

Share

Share

Email

  • MQTT
  • Network and Protocols

  • MQTT
  • Network and Protocols

  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

Minco AH439S1N10EN 温湿度变送器

Minco空间湿度探测器组件具有温度补偿功能,结构紧凑,重量轻。它们是为直接安装在建筑内墙上而设计的。他们的特点是集成电路传感器与稳定的聚合物元件,是由烧结不锈钢过滤器封装,加上先进的微处理器,以提供准确和可重复的测量。温度输出是可选的。,用于需要:

评论

您需要登录才可以回复|注册

提交评论

iotforall

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

OpenAI bringing new DALL-E 3 model to ChatGPT Enterprise

提取码
复制提取码
点击跳转至百度网盘