Smart Farming: The Future of Agriculture

2023-01-30
关注

Farm land and a chicken
Illustration: © IoT For All

The Internet of Things (IoT) has provided ways to improve nearly every industry imaginable. In agriculture, IoT has not only provided solutions to often time-consuming and tedious tasks but is totally changing the way we think about agriculture. What exactly is a smart farm, though? Here is a rundown of what smart farming is and how it’s changing agriculture.

What Is a Smart Farm?

Smart farming refers to managing farms using modern Information and communication technologies to increase the quantity and quality of products while optimizing the human labor required.

Among the technologies available for present-day farmers are:

  • Sensors: soil, water, light, humidity, temperature management
  • Software:  specialized software solutions that target specific farm types or applications agnostic IoT platforms
  • Connectivity: cellular, LoRa
  • Location: GPS, Satellite
  • Robotics: Autonomous tractors, processing facilities
  • Data analytics: standalone analytics solutions, data pipelines for downstream solutions

Technologies involved in smart farming, according to Beecham Research
Image Credit: Beecham Research

Armed with such tools, farmers can monitor field conditions and make strategic decisions for the whole farm or a single plant without even needing to step foot in the field.

The driving force of smart farming is IoT — connecting machines and sensors integrated on farms to make farming processes data-driven and automated.

The IoT-Based Smart Farming Cycle

The core of IoT is the data you can draw from things and transmit over the internet. To optimize the farming process, IoT devices installed on a farm should collect and process data in a repetitive cycle that enables farmers to react quickly to emerging issues and changes in ambient conditions. Smart farming follows a cycle similar to this one:

1. Observation . Sensors record observational data from the crops, livestock, soil, or atmosphere. 

2. Diagnostics. The sensor values are fed to a cloud-hosted IoT platform with predefined decision rules and models—also called “business logic”—that ascertain the condition of the examined object and identify any deficiencies or needs.

3. Decisions . After issues are revealed, the user, and/or machine learning-driven components of the IoT platform determine whether location-specific treatment is necessary and, if so, which.

4. Action . After end-user evaluation and action, the cycle repeats from the beginning.

IoT Solutions to Agricultural Problems

Many believe that IoT can add value to all areas of farming, from growing crops to forestry. While there are several ways that IoT can improve farming, two of the major ways IoT can revolutionize agriculture are precision farming and farming automation.

Precision Farming

Precision farming, or precision agriculture, is an umbrella concept for IoT-based approaches that make farming more controlled and accurate. In simple words, plants and cattle get precisely the treatment they need, determined by machines with superhuman accuracy. The biggest difference from the classical approach is that precision farming allows decisions to be made per square meter or even per plant/animal rather than for a field.

By precisely measuring variations within a field, farmers can boost the effectiveness of pesticides and fertilizers, or use them selectively.

Precision Livestock Farming

As is the case of precision agriculture, smart farming techniques enable farmers better to monitor the needs of individual animals and adjust their nutrition accordingly, thereby preventing disease and enhancing herd health.

Large farm owners can use wireless IoT applications to monitor the location, well-being, and health of their cattle. With this information, they can identify sick animals, so that they can be separated from the herd to prevent the spread of disease.

Automation in Smart Greenhouses

Traditional greenhouses control the environmental parameters through manual intervention or a proportional control mechanism, which often results in production loss, energy loss, and increased labor costs.

IoT-driven smart greenhouses can intelligently monitor as well as control the climate, eliminating the need for manual intervention. Various sensors are deployed to measure the environmental parameters according to the specific requirements of the crop. That data is stored in a cloud-based platform for further processing and control with minimal manual intervention.

Agricultural Drones

Agriculture is one of the major verticals to incorporate both ground-based and aerial drones for crop health assessment, irrigation, crop monitoring, crop spraying, planting, soil and field analysis, and other spheres.

Since drones collect multispectral, thermal, and visual imagery while flying, the data they gather provide farmers with insights into a whole array of metrics: plant health indices, plant counting and yield prediction, plant height measurement, canopy cover mapping, field water pond mapping, scouting reports, stockpile measuring, chlorophyll measurement, nitrogen content in wheat, drainage mapping, weed pressure mapping, and so on.

Importantly, IoT-based smart farming doesn’t only target large-scale farming operations; it can add value to emerging trends in agriculture like organic farming, family farming, including breeding particular cattle and/or growing specific cultures, preservation of particular or high-quality varieties, and enhance highly transparent farming to consumers, society and market consciousness.

Third Green Revolution

Smart farming and IoT-driven agriculture are paving the way for what can be called a Third Green Revolution.

Following the plant breeding and genetics revolutions, the Third Green Revolution is taking over agriculture. That revolution draws upon the combined application of data-driven analytics technologies, such as precision farming equipment, IoT, big data analytics, Unmanned Aerial Vehicles (UAVs or drones), robotics, etc.

In the future, this smart farming revolution depicts, pesticide and fertilizer use will drop while overall efficiency will rise. IoT technologies will enable better food traceability, which in turn will lead to increased food safety. It will also be beneficial for the environment, through, for example, more efficient use of water, or optimization of treatments and inputs.

Therefore, smart farming has a real potential to deliver a more productive and sustainable form of agricultural production, based on a more precise and resource-efficient approach. New farms will finally realize the eternal dream of mankind. It’ll feed our population, which may explode to 9.8 billion by 2050.

This article was originally published on June 22, 2020 and updated January 25, 2023.

Tweet

Share

Share

Email

359 Shares

  • Agriculture
  • Automation
  • Data Analytics
  • Drones
  • Farming

  • Agriculture
  • Automation
  • Data Analytics
  • Drones
  • Farming

参考译文
智能农业:农业的未来
物联网(IoT)提供了改善几乎所有可以想象到的行业的方法。在农业领域,物联网不仅为耗时乏味的任务提供了解决方案,而且完全改变了我们对农业的看法。那么,究竟什么是智能农场呢?这里简要介绍了什么是智能农业,以及它如何改变农业。智能农业是指利用现代信息和通信技术来管理农场,以提高产品的数量和质量,同时优化所需的人力劳动。有了这些工具,农民就可以监测田间情况,为整个农场或单株植物做出战略决策,甚至不需要踏足田间。智能农业的驱动力是物联网——将集成在农场上的机器和传感器连接起来,使农业过程数据驱动和自动化。物联网的核心是你可以从事物中提取并通过互联网传输的数据。为了优化养殖过程,安装在农场上的物联网设备应该以重复的周期收集和处理数据,使农民能够对新出现的问题和环境条件的变化做出快速反应。智能农业遵循一个与此类似的循环:观察。传感器记录来自作物、牲畜、土壤或大气的观测数据。2. 诊断。传感器值被馈送到具有预定义决策规则和模型(也称为“业务逻辑”)的云托管物联网平台,以确定被检查对象的状况,并确定任何缺陷或需求。决策。在发现问题后,用户和/或物联网平台的机器学习驱动组件决定是否需要特定位置的处理,如果是的话,是哪一个。行动。在最终用户评估和采取行动之后,循环从一开始重复。许多人认为,物联网可以为从种植农作物到林业的所有农业领域增加价值。虽然物联网可以通过多种方式改善农业,但物联网可以彻底改变农业的两种主要方式是精准农业和农业自动化。精准农业或精准农业是基于物联网的方法的一个总体概念,使农业更加可控和准确。简单地说,植物和牛得到了它们所需要的治疗,这是由机器以超人的精度决定的。与经典方法最大的不同是,精准农业允许每平方米甚至每棵植物/动物做出决策,而不是针对一块田地。通过精确测量农田内的变化,农民可以提高农药和化肥的有效性,或者有选择地使用它们。就像精准农业一样,智能农业技术使农民能够更好地监测个体动物的需求,并相应地调整它们的营养,从而预防疾病,提高群体健康。大型农场所有者可以使用无线物联网应用程序来监控牛的位置、福祉和健康状况。有了这些信息,他们可以识别生病的动物,这样就可以将它们与兽群分开,防止疾病的传播。传统大棚通过人工干预或比例控制机制来控制环境参数,往往导致产量损失、能量损失和人工成本增加。物联网驱动的智能温室可以智能监测和控制气候,无需人工干预。根据作物的具体要求,部署各种传感器来测量环境参数。这些数据被存储在一个基于云的平台上,用于进一步处理和控制,无需人工干预。农业是将地面和空中无人机用于作物健康评估、灌溉、作物监测、作物喷洒、种植、土壤和田间分析以及其他领域的主要垂直领域之一。 由于无人机在飞行过程中收集多光谱、热成像和视觉图像,它们收集的数据为农民提供了一系列指标:植物健康指数、植物计数和产量预测、植物高度测量、冠层盖度测绘、田间水塘测绘、侦察报告、库存测量、叶绿素测量、小麦氮含量、排水测绘、杂草压力测绘等。重要的是,基于物联网的智能农业不仅针对大规模农业经营;它可以为有机农业、家庭农业(包括饲养特定的牛和/或种植特定的文化)等农业新兴趋势增加价值,并保护特定或优质品种,并增强对消费者、社会和市场意识的高度透明农业。智能农业和物联网驱动的农业正在为所谓的第三次绿色革命铺平道路。继植物育种和遗传学革命之后,第三次绿色革命正在接管农业。这场革命利用了数据驱动的分析技术的综合应用,如精准农业设备、物联网、大数据分析、无人机、机器人等。在未来,这场智能农业革命描绘了农药和化肥的使用将下降,而整体效率将提高。物联网技术将实现更好的食品可追溯性,从而提高食品安全。它还将有利于环境,例如,通过更有效地使用水,或优化处理和投入。因此,基于更精确和资源效率更高的方法,智能农业具有提供更高效和可持续农业生产形式的真正潜力。新型农场将最终实现人类永恒的梦想。到2050年,我们的人口可能会暴增至98亿。本文最初发表于2020年6月22日,更新于2023年1月25日。
  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

Minco AH439S1N10EN 温湿度变送器

Minco空间湿度探测器组件具有温度补偿功能,结构紧凑,重量轻。它们是为直接安装在建筑内墙上而设计的。他们的特点是集成电路传感器与稳定的聚合物元件,是由烧结不锈钢过滤器封装,加上先进的微处理器,以提供准确和可重复的测量。温度输出是可选的。,用于需要:

评论

您需要登录才可以回复|注册

提交评论

iotforall

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

由AI傻瓜科学家撰写的研究摘要

提取码
复制提取码
点击跳转至百度网盘