Viral New Superconductivity Claims Leave Many Scientists Skeptical

2023-07-29
关注

If rumor has wings, extraordinary scientific claims have a jet engine. Within hours of appearing on the preprint server arXiv.org, two papers by a team of scientists in South Korea generated enormous viral buzz. The researchers’ extraordinary claim is that they have discovered a room-temperature ambient-pressure superconductor, a material that can conduct electricity perfectly under everyday conditions.

A genuine ambient-condition superconductor is often touted for its potential to transform many technologies. It could enable a perfectly efficient power grid, levitating trains, commercially viable fusion reactors—the typical list goes on. The authors wrote that their discovery “will be a brand-new historical event that opens a new era for humankind.” But their experiment has yet to be properly scrutinized by the scientific community, and the quest for breakthrough superconductors has a long history of big claims that end up falling flat.

What’s superconductivity anyway?

When electrons flow through a standard conductive material, such as an aluminum wire, they act something like bumper cars, bouncing off atoms. All this bouncing creates resistance, reducing the electric current. But if that aluminum wire is cooled down to about one kelvin above absolute zero (–459 degrees Fahrenheit), something bizarre happens: the rules of traffic change so that electrons join together into pairs that glide frictionlessly among the aluminum atoms with zero resistance.

In 1987 researchers discovered the first “high-temperature” superconductors—materials that only needed to be cooled down to 77 kelvins (–321 degrees F), a temperature easily reachable via cheap and plentiful liquid nitrogen. These materials were literally and figuratively electrifying, sparking a jolt of enthusiasm among scientists and the public about the possibilities of warmer superconductivity. But much of the enthusiasm faded as advances slowed, and “high-temperature” superconductors stayed stuck at cold temperatures and remained impractically brittle.

During the past decade, researchers have pursued an interesting alternative: They discovered hydrogen-based compounds that are superconductors at relatively warm temperatures—but only while squeezed to pressures greater than one million atmospheres. And maintaining such high pressures is even more impractical than sustaining superlow temperatures.

What are the latest claims?

In their new preprint papers, the researchers say that LK-99, a compound of lead, copper, phosphorus and oxygen, is a superconductor at temperatures above 400 kelvins (260 degrees F) and ambient pressure. They also include a detailed recipe for making raisin-sized pellets of the compound, which requires mixing precise ratios of the powdered ingredients and then baking the mixture at high temperatures.

The authors also report performing tests of LK-99 and say they found the electrical resistivity dropping sharply around 378 kelvins (220 degrees F) and then reaching nearly zero around 333 kelvins (140 degrees F). Although zero electrical resistance is superconductivity’s hallmark, other tests are required to confirm a genuine superconductor. One such test is for the Meissner effect: because a superconductor expels magnetic fields, it repels other magnets, producing an iconic levitating effect. The South Korean researchers provided a video of what they say is LK-99 exhibiting the Meissner effect, but superconductors aren’t the only things that float above magnets—graphite, for example, also levitates.

Why are many scientists dubious?

Extraordinary claims that did not survive scrutiny have long plagued the field of superconductivity. In 1987, after a compound called YBCO was discovered to be a high-temperature superconductor, some researchers thought they saw hints of the compound developing superconductivity at room temperature—but those disappeared on closer inspection. The list of once-promising failures goes on and on: sandwiches of aluminum and carbon, copper chloride, ammonia-based compounds, and more all teased room-temperature superconductivity that ultimately proved illusory.

Ranga Dias, a physicist at the University of Rochester, has recently made multiple claims about room-temperature superconductors. But retractions and allegations of scientific misconduct have marred the credibility of those findings.

All of this means that strong skepticism is the default for new reports of room-temperature superconductivity—especially ones that are as yet largely unvetted by peer review. In this latest case, several details in the South Korean team’s preprint papers have raised concern. James Hamlin, a physicist at the University of Florida, points out oddities in a measurement of LK-99’s magnetic properties that gave him pause. “It doesn't really look much like my experience of measuring” these properties, he says.

Doug Natelson, a physicist at Rice University, spontaneously spotted something even stranger while going over the preprints during an interview for this story. Both papers include a data plot detailing LK-99’s magnetic properties. Both plots were sourced from the same dataset and should thus be identical—but the plot in one paper has a y-axis with a scale that is about 7,000 times larger than the other. This kind of inconsistency does not prove anything, but at minimum, it suggests a worrisome shortfall in proofreading. Scientific American reached out to the South Korean team for comment but did not receive a response by the time of this story’s publication.

Getting definitive answers about what’s really happening in LK-99 demands patience, as eager independent teams attempt to replicate the South Korean team’s work. Because the recipe for LK-99’s synthesis is straightforward, results could come in the next few days or weeks. Natelson is interested, but he isn’t holding his breath. “It's not rare for people to see weird stuff which in the end doesn’t pan out,” he says.

  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘