CCD图像传感器——颠覆人类记录影像的方式

2022-03-07
关注


基于半导体技术的CCD图像传感器改变了人类用胶片记录影像的历史。时至今日,数字化影像不仅是科学分析的重要工具,也深入每个人的日常生活

维纳德 • 波利(左)和乔治 • 史密斯(右)在1969年发明了CCD技术 
来源:文献[1]


2009年,维纳德 • 波利(Willard S. Boyle)和乔治 • 史密斯(George E. Smith)因为发明CCD(Charge-coupled Device,电荷耦合元件,或称为CCD图像传感器)而获得当年的诺贝尔物理学奖。
诺贝尔奖委员会主席约瑟夫·诺德格伦(Joseph Nordgren)在宣布该奖项的新闻发布会上说:“当今社会的记录影像的方式完全基于CCD的研究。” “这项研究的实际意义是巨大的……它改变了我们的生活,不仅在科学领域,而且在整个社会领域。”


胶片时代

在1975年数码相机发明以前,人们记录影像的方式是使用胶片。它的工作过程可以概述为:光线经过照相机镜头,然后由快门的速度来决定曝光量的多少。光线使胶片上的银盐产生化学反应,最后在胶片上生成影像的潜影。经过暗房里的冲洗形成影像并制成底片。利用调配将底片显影最终印出。

胶片摄影需要经过复杂的处理才能得到影像 

[图片来源自网络]


CCD的发明

1969年10月,史密斯和波利在贝尔实验室吃午餐时,讨论产生了灵感。午餐后继续探讨,当天就构想出了CCD这个无处不在的成像发明。不过,从造出样机到研制出科学家和摄影师都可以使用的实用技术,这条路漫长而艰难。尽管CCD后来主宰了天文学领域,但它在刚发明时分辨率非常低,根本派不上实际用场。当时CCD的信噪比很差,不大容易看得出它是否会有远大的前程。

第一个CCD器件 

来源:文献[4]

第一个CCD集成器件

来源:文献[4]

早期的线性成像CCD
来源:文献[4]

在接下来的时间里,成百上千的科学家和工程师努力奋斗,逐步将CCD推向实用化,包括美国的仙童(Fairchild)、柯达泰克(Tektronix)和德州仪器(Texas Instruments,TI),以及日本的夏普(Sharp)、索尼(SONY)、东芝(Toshiba)和日本电气(NEC)等公司都作出了许多贡献。航天、科学和消费等方面的应用,都得益于为解决CCD问题而从不同渠道投入的经费,但是问题还是很棘手,那是一条非常艰苦的发展之路。


CCD的原理

CCD是一种半导体器件,能够把光学影像转化为数字信号。CCD上植入的微小光敏物质称作像素(Pixel)。像素数越高,面积越大,成像质量就越高越清晰。CCD上有许多排列整齐的电容,能感应光线、储存信号并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给相邻的图像处理器来形成图像。
MOS电容器是构成CCD的最基本单元,它是金属—氧化物—半导体(MOS)器件中结构最为简单的。

MOS电容器
来源:文献[4]

CCD的基本工作过程主要是信号电荷的产生、存储、转移和检测:
(1)信号电荷的注入(产生):在CCD中,电荷注入的方式可分为光注入和电注入两类。当光照射到CCD硅片上时,在栅极附近的半导体体内产生电子-空穴对,多数载流子被栅极电压排斥,少数载流子则被收集在势阱中形成信号电荷。

背照式光注入
来源:文献[8]

所谓电注入就是CCD通过输入结构对信号电压或电流进行采样,然后将信号电压或电流转换为信号电荷注入到相应的势阱中。电注入常用的有电流注入和电压注入两种方式。

电注入方式

来源:文献[8]


(2)信号电荷的存储:CCD工作过程的第二步是信号电荷的收集,就是将入射光子激励出的电荷收集起来成为信号电荷包的过程。

当向SiO2表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内,形成电荷包(势阱)。对于N型硅衬底的CCD器件,电极加正偏压时,少数载流子为空穴。

电荷存储

来源:文献[8]


(3)信号电荷的传输(耦合):CCD工作过程的第三步是信号电荷包的转移,就是将所收集起来的电荷包从一个像元转移到下一个像元,直到全部电荷包输出完成的过程。

电荷转移

来源:文献[7]


三相CCD中电荷的转移方式

(a)初始状态;(b) 电荷由①电极向②电极转移;(c) 电荷在①、②电极下均匀分布;(d) 电荷继续由①电极向②电极转移;(e) 电荷完全转移到②电极;(f) 三相交叠脉冲

来源:文献[8]


(4)信号电荷的检测:CCD工作过程的第四步是电荷的检测,就是将转移到输出级的电荷转化为电流或者电压的过程。

其中电荷输出类型,主要有三种:1)电流输出;2)浮置栅放大器输出;3)浮置扩散放大器输出。

电荷检测电路

来源:文献[8]


CCD工作过程示意图

来源:文献[6]


 CCD图像传感器是按一定规律排列的MOS(金属—氧化物—半导体)电容器组成的阵列。在P型或N型硅衬底上生长一层很薄(约120nm)的二氧化硅,再在二氧化硅薄层上依次序沉积金属或掺杂多晶硅电极(栅极),形成规则的MOS电容器阵列,再加上两端的输入及输出二极管就构成了CCD芯片。

按照像素排列方式的不同,可以将CCD分为线阵和面阵两大类。

线阵CCD每次扫描一条线,为了得到整个二维图像的视频信号,就必须用扫描的方法实现。线阵CCD又分为单沟道线阵CCD和双沟道线阵CCD。

单沟道线阵CCD:转移次数多、效率低。只适用于像素单元较少的成像器件。

双沟道线阵CCD:转移次数减少一半,它的总转移效率也提高为原来的两倍。

线阵CCD

来源:文献[6]


面阵CCD:按照一定的方式将一维线阵CCD的光敏单元及移位寄作器排列成二维阵列。就可以构成二维面阵CCD。面阵CCD同时曝光整个图像。

帧转移面阵CCD——优点:电极结构简单,感光区面积可以很小。缺点:需要面积较大暂存区。


帧转移面阵CCD结构及工作过程

来源:文献[6]


隔列转移面阵CCD——优点:转移效率大大提高。缺点:结构较为复杂。

隔列转移面阵CCD结构及工作过程

来源:文献[6]


CCD功能示意图
来源:文献[7]

CCD芯片结构

图片来源自网络


CCD的发展

CCD的发明具有划时代的意义,它的出现使得人类捕捉信息达85%的眼睛这个重要器官得到了极大扩展与延申。

促进CCD快速发展主要有三个因素:首先,CCD的尺寸小,重量轻,消耗功率少,超低噪声,动态范围较大,线性良好,可靠,耐用。第二,这种器件在形状、快速、外形质量和成本方面能与真空管抗衡。第三,空间成像应用需要新的探测器。

20世纪70年代,美国贝尔实验室成功研制了世界上第一只CCD,它的诞生使成像、摄像等技术呈现一次飞跃。1973年,仙童公司把CCD技术应用于商业领域,制造出第一只商用CCD成像器件,这开辟了CCD在工业领域的道路。80年代后期,CCD在大多数视频应用中取代了电子管。进入90年代后,CCD应用于分辨成像,广泛应用于专业电子照相、空间探测、X射线成像及其他科研领域。

两种CCD产品

图片来源自网络


市场应用的结果证明CCD是科学领域的一项重大技术变革。它在被忽视数十年之后,能获得2009年的诺贝尔奖可谓实至名归。

变革不停

但是,科学技术的进步一刻也不曾停止。1998年,CMOS图像传感器(Complementary Metal-Oxide-Semiconductor Image Sensor,CIS)诞生了。CMOS的光电信息转换功能与CCD的基本相似,区别就在于这两种传感器的光电转换后信息传送的方式不同。CMOS具有读取信息的方式简单、输出信息速率快、耗电少(仅为CCD芯片的1/10左右)、体积小、重量轻、集成度高、价格低等特点。从2008年开始,各大厂商都开始逐渐把背照式CMOS使用在不同的数码相机产品上。从此,CMOS图像传感器迅速发展。

CMOS取代CCD

图片来源自网络


科技不断发展,相信在未来的某一天,一定会有更多种类的传感器出现,这也只是时间的问题,到那时我们回望过去,看看我们曾经经历过的胶片时代、CCD时代和CMOS时代,一定会由衷的感叹科技日新月异的飞速发展。


参考文献

  1. https://www.nobelprize.org/prizes/physics/2009/summary/

  2. 张汝京. 半导体产业背后的故事[M]. 清华大学出版社, 2013.

  3. 董艺婷. 摄影技术的发展及对当代社会的作用研究[D].哈尔滨师范大学,2016.

  4. Smith, G. E. (2009). "The invention and early history of the CCD." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607(1): 1-6.

  5. https://www.microscopyu.com/digital-imaging/introduction-to-charge-coupled-devices-ccds

  6. https://www.mega-9.com/tech/tech-45.html

  7. https://specinstcameras.com/what-is-a-ccd/

  8. 王庆有. 图像传感器应用技术[M]. 电子工业出版社, 2019.

  9. https://www.docin.com/p-505990925.html

  10. http://dc.yesky.com/88/31913588all.shtml




转载内容仅代表作者观点

不代表中科院物理所立场



来源:中科院半导体所

编辑:荔枝果冻


近期热门文章Top10

↓ 点击标题即可查看 ↓
1. 看完《开端》,我发现了主角循环的秘密
2. 向高压电线撒尿会被电死吗?| No.290
3. 曹则贤:从一元二次方程到规范场论
4. 今年的大年三十,咋说没就没?
5. 蟑螂产的“奶”,你敢喝吗?
6. 导致全境失联的汤加火山喷发,会影响我国吗?
7. 如果宇宙始于大爆炸,那么大爆炸始于?
8. 迈克尔·杰克逊 45 度前倾是怎么做到的?
9. 睡着但又没睡?爱迪生教你边学习边睡觉的技能
10. 土拨鼠:住手,你们不要再打了!
 点此查看以往全部热门文章 

您觉得本篇内容如何
评分

相关产品

Sharp Microelectronics 夏普 CCD Image Sensors CCD图像传感器

夏普的新的CCD II图像传感器提供清晰,可视的图像低至0勒克斯。它们还提供几乎没有失真的细节,即使在观看移动物体时也是如此。了解更多关于CCD II技术的信息。,我们的整体CCD系列提供了前所未有的更多选择,我们的长期支持使您能够自信地制定最终产品路线图。在我们的标准CCD系列中,您可以从八种分辨率(单色或彩色)中进行选择,还可以选择各种尺寸、像素深度和帧速率。

HORIBA Scientific Symphony II CCD Detectors CCD图像传感器

Symphony II系列CCD探测器是来自世界光学光谱学领导者HORIBA Scientific的阵列探测器家族。由于其独特的组合突出的灵敏度,高速,低噪音,坚固耐用,所有在紧凑和经济的封装,这些阵列探测器彻底革命了光谱检测与最终性能广泛的光谱应用。

Toshiba America (TAI) 东芝 Linear Image Sensor CCD图像传感器

线性图像传感器是将光学图像逐行转换为模拟信号的固态设备。有两种不同电路结构的线性图像传感器:CMOS图像传感器和CCD图像传感器。线性图像传感器适用于银行终端中的复印机扫描组件、图像扫描仪、条形码阅读器和钞票识别系统等应用。东芝长期以来一直是用于扫描应用的线性图像传感器领域的行业领先者,为主要市场分块提供多种产品。东芝将扩大其用于传感应用的图像传感器产品组合,专注于开发适用于广泛应用的技术和产品。

BAE Systems Imaging Solutions CCD595 CCD图像传感器

CCD 595是9216x 9216有源元件固态电荷耦合器件(CCD)全帧传感器。CCD用于先进的科学、空间和空中侦察应用。CCD 595由9216个垂直成像元件组成9216个水平阵列。成像区采用三相时钟,串行读出寄存器采用两相时钟。图像读出通过在成像和读出部分之间包含19个隔离行的四个串行寄存器来执行。成像阵列可以是单向(4输出配置)或双向(8输出配置)时钟。

Teledyne DALSA 达尔萨 FTF9168C CCD图像传感器

Teledyne DALSA的60megapixel全画幅CCD是我们的最高分辨率图像传感器之一,专为摄影、航空摄影测量和计量等最苛刻的专业数字静物应用而设计,为成像性能设定了新标准。超大面积、高动态范围、高速、抗晕能力强、低噪声,FTF9168C将这些功能集成在一个图像传感器中。当使用四个输出时,以每秒1.4帧的速度读取渐进扫描的图像。,功能突出显示

Baumer 堡盟 VeriSens® XC Series Vision Sensor with Color FEX CCD图像传感器

这使得它具有通用性和通用性:无论是内置闪光灯控制器、C型镜头安装连接器、用于高质量图像采集的CCD传感器技术还是模块化的显像管系统。

LASS-II CCD图像传感器

LASS-II(激光振幅稳定系统)是一个电光反馈回路,旨在减少通常与大多数气体激光器相关的振幅变化。该系统能够在比等离子体管的典型光耦合电流调制宽得多的带宽上显著提高激光的信噪比。该系统由反馈电子、电源和集成分束器和光电二极管放大器的电光调制器三部分组成

Quiet-Bubble™ CCD图像传感器

该方法是在期望的安静区合成不需要的噪声场的物理特性,这是通过允许控制扬声器阵列产生的声场的多通道算法实现的。

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘