芯片进入2nm时代?没那么简单

2023-01-04
关注

本文来自微信公众号:半导体行业观察 (ID:icbank),作者:mynavi,题图来自:视觉中国


日本Rapidus和IBM于今年12月13日宣布称,为量产2纳米逻辑半导体,双方建立了合作关系。


IBM长年以来一直积极进行研发尖端半导体,且曾经在美国纽约州拥有自己的300毫米晶圆工厂(于2014年转给Global Foundries,后来,该工厂被安森美收购)。此外,IBM也在为自己品牌下的电脑生产所需半导体,同时也为客户提供尖端工艺的技术研发服务和晶圆代工服务。


IBM的尖端工艺技术研发服务作为一项Common Platform,通过创建通用型工艺技术和生产产线,有效降低了研发成本、并确保了第二供应商资源(Second Source)。最初,IBM、Chartered Semiconductor Manufacturing(现在的Global Foundries)、三星电子三家公司分别在各自的工厂里提供通用型研发工艺,以研发90纳米(以及更先进的工艺)。后来,英飞凌和Freescale Semiconductor(现在的NXP Semiconductors)也参与研发32纳米制程。另外,IBM又联手索尼、东芝研发和生产了用于PLAYSTATION 3的“Cell”,后来又和AMD合作研发了SOI相关技术。在去年(2021年),有报道指出,英特尔正与IBM开展在尖端半导体方面的研发。综上所述,IBM与大多数半导体厂家有过合作经验。


研究开发和量产,完全是“两码事”


就以往的Common Platform而言,其实是“精确复制”(Copy Exactly),即完全复制在IBM生产产线上构筑的工艺,并应用于其他“伙伴工厂”。因此,从初级阶段就获得了极高的良率。


但是,据笔者了解,即使是同样的设备、同样的工艺、同样的设备参数,也未必能获得同样的良率。当IBM、东芝、索尼在各自的半导体工厂生产Cell处理器时,据说只有IBM的良率最低。只能说当时的日本还在生产尖端逻辑半导体,所以掌握了相应的量产技术。


如上所述,在2014年以后,IBM开始逐步放弃量产产线,公司仅保留对尖端工艺的研发小组。我们从IBM的高级副总裁、 IBM研究院总监Dario Gil在接受记者采访时的言谈中发现可见一二:“半导体的发展趋势即是创新,必须通过研究开发才可实现。”


一直以来,支撑摩尔定律走到今天的是工艺的微缩化。即只有更细微的工艺才有助于搭载更多的晶体管,同时单颗芯片的性能也就越丰富。最终,终端产品的附加值也就越高,也就成为了企业业绩增长的源泉。近年来,谷歌和微软等企业都在竞相自行设计LSI/SOC,即根据自身需求设计、生产专用LSI,然后为客户提供专项服务,这种做法是日本的OA(Office Automation,办公自动化)设备企业曾经的一贯“打法”,数年来未曾改变。


为什么Rapidus要引进IBM的2纳米制程?


双方建立合作关系后,Rapidus将会派技术人员到IBM位于美国纽约州奥尔巴尼市(Albany)的“Albany Nano Tech Complex(IBM主要在该据点推进研发工作)”学习。同时,Rapidus也在与IBM以外的企业合作研发2纳米工艺,目标是到2020年代后半期(2026年~2029年期间)开始量产。


Rapidus正在积极构建研发尖端半导体的体系,如与IBM一样,已经与IMEC(是欧洲一家专门研发尖端半导体工艺的研究中心)建立了伙伴关系。


不过,令人担忧的是,能否在2020年代后半期顺利导入2纳米制程。由于是一项从零开始研发的量产项目,且并不是一步步沿着微缩化路线走过来的,所以客观来讲,还是需要一定时间的。此次IBM和Rapidus的合作是直接从Planer到FinFET型。即使是直接挑战GAA型,也是十分困难的(何况此次Rapidus避开了GAA型),对此,Rapidus的小池淳义代表董事社长表示:“从FinFET到Nano-sheet(纳米片)是一个巨大的跳跃。如果不是长期从事尖端工艺研发工作的话,很难获得GAA技术要领。由于结构的变化,因此在Albany学习后,将有利于实现跳跃。”


同时,在记者招待会上,小池先生还指出:“虽然是一大挑战,但并不是不可以超越。”虽然GAA可以采用FinFET的大部分工艺,但学习起来也是有难度的。


此外,从IRDS 2022披露的逻辑半导体厂家标榜的“纳米工艺技术蓝图”来看,2纳米制程的量产在2025年2028年量产1.5纳米制程,2031年量产1.0纳米,即使Rapidus和IBM成功在2020年代下半期(2026年~2029年期间)成功量产2纳米,其制程也有可能晚于其他先进厂家1~2个代际。


IRDS 2022公布的光刻技术蓝图。(图片出自:IEEE IRDS官网)


另一方面,可以看出,IBM主要有以下两种目的:


第一,找到并确保合作研发尖端工艺的企业伙伴;


第二,增加一家可以实际生产制造晶圆的Foundry企业。


众所周知,IBM没有Foundry工厂,三星电子长期为IBM代工尖端逻辑半导体。据外海媒体报道,最先进的3纳米制程的良率很低,且很难提升(另外,也有消息指出5纳米的良率最近才提升至70%)。上述信息有可能是道听途说,但据说台积电也曾在3纳米的量产上费了很大功夫。因此,要想量产尖端工艺且保证较高的良率,是要花费很长一段时间的。对于IBM而言,找到三星电子以外的Foundry量产厂家十分重要。


实际上,在SEMICON Japan 2022的开幕式(即讨论会议)上,小池先生指出:“日本在尖端逻辑半导体方面落后了10~20年的时间,如果可以获得IBM的技术支持,将会十分有利。”在2022年12月13日的记者招待会上,Rapidus的东哲郎董事会长表示:“今天这样的日美合作项目,IBM在两年前就曾提出过。”


从这个意义上来说,Rapidus希望尽快掌握尖端工艺的技术,IBM希望找到第二家Foundry厂家,可谓是二者“一拍即合”。


量产的最大问题:采购EUV光刻机、技术成熟度


即使Rapidus在Albany学到了IBM的2纳米制程技术,也不一定就能直接量产。


最大的问题不是IBM,而是安装在SUNY Polytechnic Institute(包括Albany Nano Tech Complex)的EUV曝光设备:ADT(Alpha Demo Tool,首代EUV试做设备)、第三代“NEX:3300B”(至少IBM没有公布已经导入了上述两款设备以外的其他新款EUV曝光设备)。


另一方面,必须要熟练使用全球最新款的EUV设备,才有望量产2纳米制程(以及更先进制程)、才有望实现小池先生标榜的“成为全球交货期最短的公司”。


此外,据预测,台积电应该不会使用新一代的、高NA EUV(此处,NA=0.55)。如果,IBM可用的EUV和实际量产需要的EUV之间存在技术差距,就有必要填补这一差距。


另一方面,IMEC作为全球最先进的尖端技术研发单位,也与Rapidus建立了合作关系。据说,IMEC也与ASML建立了合作关系,并在引进ASML的最新款EUV曝光机,以用于研发工作。Rapidus应该可以利用与IMEC的合作关系,获得ASML的最新一代光刻机的相关技术,并填补上述差距。


但另一个问题是,Rapidus能否获得光刻机?ASML的2022年光刻机出货是55台,2023年预测为60多台,2025年计划为90台。虽然ASML在逐步提高产能,但随着半导体制程微缩化发展,采用EUV的层数也会越来越多,因此,未来各半导体厂家依然会继续“争抢”光刻机。据说,由于很难采购到光刻机,三星电子领导人在2020年秋季奔赴ASML谈判后,于2021年成功引进了15台。


随着公司的启动,日本政府从国库中调配了700亿日元(约人民币35亿元)支援Rapidus,据说这笔资金计划将被用于公司的基础运营。实际上,该资金要在一段时间之后才可以落实。纵然实现量产,也需要一定数量的光刻机。从这个意义上来讲,考虑到建设工厂、引进设备的日程,能否在2020年下半期实现量产,还是一个未知数。


利用2纳米制程生产什么?


在Rapidus披露要量产2纳米的目标之后,很多声音指出:“用2纳米制程生产什么?”


丰田汽车、电装、NTT、IBM等企业都对Rapidus进行了投资,想必这些企业都是希望Rapidus能为自己代工半导体。但是,现在更重要的是Rapidus能否获得苹果、高通、AMD、英伟达、联发科等尖端Fabless客户。上述客户目前都在委托台积电、三星电子生产半导体。上述需要采用尖端工艺的客户都充分理解尖端工艺的附加价值,即使到了2纳米时代,也不会发生很大变化。


下面是一个与工艺微缩化比较类似的讨论话题:增加存储容量后,存储什么呢?每次都会出现NAND(偶尔也会出现价格下滑的现象)的新应用方式。需要用更高的速度、更低的功耗来处理未来诞生的庞大数据量。


此外,目前还不清楚超级计算机(Super Computer)所要求的性能。由于提高了运算能力,所以实现了实时(Real Time)的AI处理,且可以模拟分子的复杂、长时间运动。从历史经验来看,一定会有某个企业找到新的用途,并将其作为新的商机,建立市场。即使是2纳米,也会遵循上述规律。因此,重要的是掌握用户企业所要求的半导体性能技术。


要诞生上述新市场,不仅需要培养Fabless半导体厂家,也需要整备行业的设计、研发环境。按照以往的IDM(Integrated Design and Manufacture,垂直整合制造) 模式,由一家公司设计、生产半导体,晶圆工厂仅需为母公司生产半导体、且是母公司指定功能的半导体,需求十分明确。但是,在如今的Foundry和Fabless分工十分明确的时代,仅有生产能力是没有意义的,基于自身能力、并为客户提供更高价值的产品才更重要。纵然坐拥较高的技术,如果没有客户认可,依然无法产生交易。


针对Rapidus的业务,小池先生列举了三点:第一,人才培养;第二,基于最终市场、产品,构建生产体系;第三,基于半导体,实现绿色转型(GX)。现在开始研发尖端半导体,然后在一定时间内赶上先进厂家,的确是十分困难的。长年活跃于半导体行业的小池先生、东哲郎先生都应该充分认识到了这一点。


日本的土地上真的能再次生产出尖端逻辑半导体吗?时间会给我们答案。


本文来自微信公众号:半导体行业观察 (ID:icbank),作者:mynavi

  • 半导体
您觉得本篇内容如何
评分

相关产品

Dexin Semiconductor 德芯半导体 MP-3B 平面半导体-型号

MP-3B型酒精检测用半导体气敏元件采用先进的平面生产工艺,在微型Al2O3陶瓷基片上形成加热器和金属氧化物半导体气敏材料,用电极引线引出,封装在金属管座、管帽内。

武汉普赛斯仪表 PMST系列 半导体测试设备

普赛斯半导体分立器件静态测试设备,集多种测量和分析功能一体,可以精准测量IGBT功率半导体器件的静态参数,具有高电压和大电流特性、uQ级精确测量、nA级电流测量能力等特点。

STMicroelectronics 意法半导体 IIS328DQTR 加速计

意法半导体 IIS328DQ 3 轴线性加速计是一款超低功耗、高性能的加速计,带有一个数字串行接口,兼容 SPI 或 I2C。建议用于需要宽幅温度范围和长使用寿命的工业应用。

Sensor Element 星硕传感 GMH2210 半导体气体传感器

GMH2210半导体可燃气体传感器采用半导体厚膜工艺加工制作而成的主芯片以及最新研发成功的全自动封测设备和先进的封测生产工艺制造的产品,产品性能一致性好、稳定性高。GMH2210主芯片采用的敏感材料是活性很高的金属氧化物半导体,对丙烷有较高的灵敏度和选择性,适用于民用燃气泄漏检测和家用燃气泄漏报警器等。

MEMSIC 美新半导体 MC6470 多功能

6-AXIS ECOMPASS (2X2 LGA)

Taiken 泰肯光电 TC-SOA系列半导体光放大模块 其它

TC-SOA系列半导体光放大(SOA)模块内部采用了进口高性能SOA,采用独特的ATC设计保证输出功率的稳定性,其高速全光放大的模块,对传输协议完全透明的特点,尤其适用于高速光纤通信系统。

意瑞半导体 CH502 速度传感器

意瑞高性能齿轮齿传感器IC CH502

评论

您需要登录才可以回复|注册

提交评论

天天炫技

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

全球半导体市场显“疲态”

提取码
复制提取码
点击跳转至百度网盘