突破性能瓶颈!MEMS关键器件材料创新 | Nature Electronics

2024-07-23
关注

【研究背景】

在微电子机械系统(MEMS)领域,随着科技进步和应用需求的增加,对于传统MEMS材料(如硅或氮化硅)的力敏感性(FS)和信噪比的限制引起了研究人员的关注。这些材料在应用中通常用于制造悬臂,特别是在原子力显微镜(AFM)中,用于在纳米尺度下探测样品。传统上,通过光束偏转(OBD)方法检测AFM悬臂的挠度,这种方法依赖于悬臂末端的角度变化。然而,随着技术的发展,具有自我感知能力的悬臂也相继发展起来,这些悬臂集成了可以自主检测挠度的传感元件,例如压电电阻传感器。


尽管自感知悬臂具有潜在的优势,例如简化的检测装置和更小的体积,但它们的应用受到了其低FS和信噪比的限制。这主要是因为传统的硅基或氮化硅材料在厚度上的限制导致了弹簧常数较高,从而影响了其挠度灵敏度(DS)。为了提高FS,悬臂必须增加厚度,但这又会增加其弹簧常数,从而抵消了其在DS上的潜在优势。


为了克服这些挑战,研究人员开始探索使用聚合物材料作为MEMS悬臂的替代选择。聚合物具有显著较低的杨氏模量,例如SU-8的杨氏模量约为氮化硅的60倍,这使得聚合物MEMS可以制造更厚的悬臂而不增加弹簧常数。然而,传统的聚合物材料与高灵敏度因子的半导体应变传感器不兼容,因其所需的高温制程可能会损害聚合物结构。


有鉴于此,洛桑联邦理工学院(EPFL)生物与纳米仪器实验室Georg E. Fantner教授团队在“Nature Electronics”期刊上发表了题为“A polymer–semiconductor–ceramic cantilever for high-sensitivity fluid-compatible microelectromechanical systems”的最新论文。研究人员采用了三层结构的设计,将聚合物核心夹在两层陶瓷氮化硅层之间,并在半导体传感电子设备嵌入聚合物与硬陶瓷层之间。关键在于,他们成功地分离了制造电子元件所需的高温工艺和制造悬臂核心所需的聚合物工艺,从而确保了悬臂的结构完整性和性能稳定性。

A polymer–semiconductor–ceramic cantilever for high-sensitivity fluid-compatible microelectromechanical systems.


【科学亮点】

1)实验首次将低杨氏模量的聚合物材料集成于三层MEMS悬臂中,开发出一种新型的聚合物-半导体-陶瓷MEMS平台。这种结构不仅增强了悬臂的厚度和柔软性,还显著提高了力敏感性和挠度灵敏度。


2)通过高温工艺与聚合物处理的分离,本研究成功地在聚合物基体中嵌入半导体应变传感器,解决了传统MEMS材料与电子材料相互影响的问题。该三层悬臂的力噪声比硅悬臂降低了六倍,证明了其在传感精度上的优势。


3)实验结果显示,三层悬臂在自感知原子力显微镜(AFM)和膜表面应力传感器应用中表现出优异的流体兼容性。即使在苛刻的化学环境中(如氯化铁),悬臂也能持续工作5小时而无降解现象,展现了其在生物分析中的潜在应用价值。


4)研究还表明,聚合物MEMS在应变传感方面的灵敏度虽较低,但结合高性能电子元件的使用,仍能有效提升自感知能力,为未来多功能MEMS设备的发展提供了新思路。


【图文解读】


图 1:不同读出机制中的力转电压。


图 2:三层悬臂梁的概念及性能。


图 3:三层技术的理论与实验评估。


图 4:三层悬臂梁在真空中用于 AM-AFM 的高跟踪带宽。


图 5:三层悬臂梁作为多种扫描探针技术的平台。


图 6:用于流体密封膜表面应力传感的三层 MEMS。


【科学启迪】

本文的研究展示了聚合物、半导体和陶瓷材料三层结构在微电子机械系统(MEMS)中的创新应用,为力传感和自感知技术的发展提供了新的思路。首先,通过将聚合物与高性能半导体电子元件结合,该方法突破了传统MEMS材料在厚度和柔软性上的限制,展示了多层结构在增强挠度灵敏度和力敏感性方面的优势。这一创新表明,在MEMS设计中,灵活运用材料的组合,可以实现更高的性能和适应性。


其次,研究中开发的多层制造工艺,成功地将高温工艺与聚合物加工分开,不仅保证了材料的兼容性,也使得制造过程更具可控性和可扩展性。这种工艺的灵活性为未来MEMS设备的集成化与小型化提供了新的可能,尤其是在要求高灵敏度和高稳定性的应用场景中,如生物检测和环境监测。


此外,该研究还揭示了在苛刻环境下操作MEMS的潜力,表明三层结构的设计在保持电子元件稳定性和有效性的同时,具备流体兼容性。这一特性为未来MEMS在生物医学和化学分析领域的应用奠定了基础,提供了强有力的技术支持。


总的来说,本文不仅推动了MEMS技术的发展,还为科学研究者和工程师提供了一个新的视角,强调了材料选择和制造工艺的重要性。通过结合不同材料的优势,我们能够设计出更具适应性的MEMS设备,从而更好地满足未来高精度传感需求的挑战。


原文详情:


Hosseini, N., Neuenschwander, M., Adams, J.D. et al. A polymer–semiconductor–ceramic cantilever for high-sensitivity fluid-compatible microelectromechanical systems. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01195-z



您对本文有什么看法?欢迎在传感器专家网公众号本内容底下留言讨论,或在中国最大的传感社区:传感交流圈中进行交流。



  • MEMS传感器
  • 半导体
您觉得本篇内容如何
评分

相关产品

Dexin Semiconductor 德芯半导体 GM-402B MEMS传感器-型号

MEMS 可燃气体传感器利用MEMS工艺的Si基微热板和在洁净空气中电导率较低的金属氧化物半导体材料组成。当环境空气中有被检测气体存在时,传感器的电导率发生变化。该气体的浓度越高,传感器的电导率就越高。使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。

ADI 亚德诺 ADXL316WBCSZ 加速计

亚德诺半导体 (亚德诺半导体)传感器解决方案包括 MEMS 加速度计、MEMS 陀螺仪、MEMS 惯性测量单元(IMUs)、 光学传感器、各向异性磁阻(AMR)传感器、 温度传感器、霍尔效应传感器。

ASAIR 奥松电子 AGS02MA 气体传感器

ASAIR 奥松电子 MEMS半导体智能 TVOC 气体传感器 AGS02MA

汉威科技 GM-302B MEMS传感器

MEMS 酒精气体传感器利用MEMS工艺的Si基微热板和在洁净空气中电导率较低的金属氧化物半导体材料组成。当环…

Sensor Element 星硕传感 GMH8463 MEMS气体传感器

GMH8463氢气气体传感器是基于MEMS工艺开发的半导体气体传感器,可用于检测不同场景下氢气气体含量。除了传感器的设计,本公司还提供包括整合电路在内的完整的气体传感器模块。

CSMS 中科微感 CM-A3012S TVOC 传感器 气体传感器

中科微感研发生产的TVOC传感器是一款MEMS基金属氧化物半导体传感器,对 TVOC 具有很高的灵敏度。采用全新气体敏感材料技术,以及半导体膜层沉积工艺,并优化了 MEMS 衬底结构,使得传感器相较上一代产品具有更高 灵敏度、高响应、稳定性强的特点,并且产品具有超高一致性,极大地提升了抗中毒性、改善了漂移问题,可以检测 0.1-500 ppm 范围的 TVOC 浓度,传感器耐硅中毒性能测试优秀。本传感器可嵌入各种与空气中TVOC浓度相关的仪器仪表或环境改善设备,为其提供及时准确的浓度数据,且检测过程操作方便、测量准确、工作可靠,无需重新标定,大幅度降低了研发成本、生产成本

迈思泰克 传感器倒装芯片贴片机 半导体贴装设备

倒装芯片混合贴片机YRH10概述,雅马哈专有的混合贴片机,最适合由半导体和 SMD 组成的模块器件,在传感器MEMS领域广泛应用。

IDM 慧闻科技 SMD1013B 挥发性有机化合物(VOC)传感器

SMD1013B 空气质量传感器(TVOC)是基于 MEMS 工艺半导体材料开发的微型气体传感器,可用于检测不同场景下TVOC 气体含量。该传感器是将自主研发的 VOC 气体敏感材料涂布于电极上,当有机挥发性气体接触敏感材料时,敏感材料的电导率会发生变化,使用特定的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。

晖真微电子 S27 压力传感器

该产品可替代国外ST(意法半导体)的LPS27HHW防水MEMS压力传感器,可防水防腐;具体可应用在高度计、天气预报机、GPS设备、码表、燃气表、智能穿戴手表/手环、无人机、智能家居等领域。

芯微物联/THINWAY THW1581 无线温湿度传感器 温湿度传感器

THW1581无线温湿度传感器采用MEMS半导体集成数字式温湿度传感器设计,由微控制器采集并逻辑处理后,通过LPWAN无线通讯方式将数据传输到无线接收终端进行集中监控。无线温湿度传感器由大容量锂亚电池供电,低功耗设计。 主要用途 可用于各种行业的环境温度、湿度监测,例如:机房、仓库、配电室、档案室、冷库、

评论

您需要登录才可以回复|注册

提交评论

传感器专家网

传感器行业综合服务平台,立志于建设便捷方便的传感器选型器、行业专业媒体

关注

点击进入下一篇

中国传感器现7.93亿元并购!涉及两大国产MEMS十强巨头!

提取码
复制提取码
点击跳转至百度网盘