华为:面向未来的10大问题和挑战,传感器是绕不过去的难关!

2023-06-27
关注
摘要 华为认为传感器技术将往哪些方面发展?

6月15日,据媒体报道,华为参与欧盟旗舰研究和创新计划“展望欧洲”(Horizon Europe)的11项专案,该计划将持续到2027年,预算为955亿欧元。其中,华为参与的11个项目包括人工智能(AI)、6G、云计算、量子传感、连接以及自动驾驶框架在内的技术,每项最多获得14%资金,华为合计拿到389万欧元资金。


在如今的大环境下,不得不说,华为纯粹凭过硬的技术实力拿到了欧盟的这些项目。其中,我们看到,除了AI、6G等华为被公认的技术强项外,华为竟然还参与了量子传感的研究。


事实上,华为多年来重视传感器技术的研发,以及未来感知技术在6G、AI等方面发挥的作用。早在2018年,华为在就在法国成立了主攻传感器和感知算法研发的研究中心;华为进入智能汽车/自动驾驶领域以来,研发了激光雷达、毫米波雷达等全栈感知传感器。


这家中国最顶尖的科技企业——华为,认为未来传感器等感知技术将发挥什么作用?未来传感器将面临什么挑战?传感器技术将往哪些方面发展?


此前,华为战略研究院院长周红博士的演讲中 ,对这些问题进行了探讨,本文为该演讲全文,或许有所启发。周红博士指出“我认为21世纪将是人类社会全面走向智能化的时代,智能化的核心是感知、连接和计算,以及由此带来对物质和现象、生命和能量等的更高认知和掌控能力。”


以智能化时代和感知、连接、计算为核心,周红博士提出了四个科学假设以及面向未来的10个问题和挑战,其中,“新的感知和控制能力”、“拓展感知极限”、“如何连续、无感知地测量人的血压、血糖和心电”、“发展超越传统CMOS制造的技术”等方面均涉及到传感器技术的应用和研究,可见华为高层对未来传感器技术的重视和战略发展眼光。



专家档案

周红博士,华为战略研究院院长。周红博士出生于1969年,毕业于复旦大学,博士。1997年加入华为,历任无线产品线研发管理部部长、中央硬件工程院总裁、欧洲研究院院长、2012实验室(战略对接)副总裁等,现任公司战略研究院院长等职务。周红博士在华为公司定位是科学家,欧研院院长的经历让他同很多科学家,包括诺贝尔奖、图灵奖、菲尔兹奖获得者进行了交流与探讨,共同讨论了很多挑战的问题以及前沿探索进展,思索未来社会可能的发展方向。


华为战略研究院院长周红演讲全文:


很高兴有机会和大家探讨面向未来的科学假设和商业愿景。


我们知道,18世纪是机械化时代、19世纪是电气化时代、20世纪是信息化时代,那么21世纪会是什么时代呢?


我认为21世纪将是人类社会全面走向智能化的时代,智能化的核心是感知、连接和计算,以及由此带来对物质和现象、生命和能量等的更高认知和掌控能力。


在走向智能世界的路上,我们面临着巨大的挑战,一方面,幸福生活、高效工作、绿色环境还需要感知、连接和计算提升成百上千倍能力,另一方面,在相关科学与技术上,过去的几十年中都没有大的突破,甚至已经接近瓶颈,怎么才能创造可行的发展路线?


我认为,面向未来,只有大胆提出假设、大胆提出愿景,敢于打破既有理论与技术瓶颈的条条框框,才能大踏步前行。


1、数字技术极大丰富了人类的工作与生活



在过去的10年中,随着宽带通信、智能设备、AI和云计算的迅速发展,数字技术极大丰富了人们的生活,从打电话、上网浏览信息、即时通信,到地图导航、电子银行、网上购物等,ICT技术已经成为越来越多人们生活中不可或缺的重要部分。


除了生活中所需要的ICT技术,我们也在过去10年中,与很多行业进行联合探索,看看ICT技术能不能帮助或者是怎样帮助行业发展。



例如,我们与汽车公司、电信运营商一起,在高速公路上进行试验,大家知道,人工驾驶的反应速度是以秒为单位的,我们通过在汽车之间、以及汽车与网络之间建立10毫秒级的高性能连接,帮助将紧急事件的检测和反应能力提升上百倍,在100公里时速下,可以将人工驾驶所需要的几十米、上百米的安全距离,缩小到0.8米,从而极大地提升高速公路的车流量与安全性,同时可以支持组队行驶减少风阻,节省20%左右的油耗。


车联网还可以支持远程驾驶,创造新的作业模式与服务模式。


我们也在城市环境中进行试验,通过超视距的车联网、车路协同,有可能提升30%通行效率、减少90%交通事故。


今天,在工厂、在医院、在港口、在煤矿,ICT技术正在深入千行百业,使能行业数字化、智能化转型。


2、人类对未来的追求永无止境



面向未来,我们看到还有很多地方,ICT技术有可能做出更大的贡献。


比如人的健康与幸福,通过穿戴式传感器、无线通信与云计算,可以更好地支持运动健康和慢性病的管理,AI计算还能帮助进行药物和疫苗的快速设计和高效筛选。


ICT技术可以支持无处不在的自动和智能机器,从而提升人们的生活质量,提高各行各业的作业效率。


ICT技术可以帮助建设绿色可持续发展的环境,例如进行高效的能源变换和调度、设计低成本、高效率的能源转换催化剂、储能材料。


在虚实融合的数字世界上,ICT技术还能帮助建立“远在天边、近在眼前、身临其境”的体验,丰富人们的生活、帮助人们学习成长、帮助各行各业在数字世界快速迭代改进等。


3、全球数字化超越“十年百倍”的发展



在这么多的需求驱动下,全球数字化正以指数速度增长。


例如全球的移动宽带数据流量,从2010年的每月0.24艾字节(EB),增长到2020年的每月60艾字节,在10年时间中增长超过250倍。


中国的移动宽带数据流量,从2010年的每月0.033艾字节,发展到2020年的每月13艾字节,增长超过400倍。


面向未来,我们认为数字技术将以超过十年百倍的速度增长,数字化将促进人和社会加速发展。



从另一方面,我们也看到,现有的很多理论和技术都是几十年前甚至一百多年前提出的,基于这些理论和技术的应用已经开始遇到瓶颈,例如通信领域的奈奎斯特采样定理和香农定律、计算领域的可计算性理论和冯·诺依曼架构、半导体领域的摩尔定律等,希望有新的假设和愿景来牵引突破。


为此,我们提出面向未来的4个科学假设和商业愿景,希望与学术界、产业界一起共同探索,开展面向未来的研究。


一:拓展认知的边界,物质与能量、现象与规律



首先是探索基础科学和前沿技术,拓展我们认知的边界。尤其是物理、化学、生物等领域的突破,将使我们能够更好地发明新分子、催化剂、蛋白质等材料和器件,以及新的装备和新工艺。


有一次,我和一位量子科学家讨论,怎么把光子、量子存起来?他在1993年就提出了量子存储概念的时候没人相信,大家可能会想,能用一个瓶子把光存起来吗?存储量子的操作不会影响它的状态?直到1998年,哈佛Hau等人用电磁感应透明现象将光子速度降到17m/s,2000年,她们成功地把光子“冻结”了一分钟时间。2006年帝国理工的Pendry等人提出可以用类似“光子黑洞”的思路来束缚住光,让其无法离开。目前已经有很多办法来可以实现量子存储,从而更好地支持量子通信和量子计算。


为了降低半导体器件的功耗、提升可靠性,我们和科学家合作,分析半导体器件中的热机理,看看能不能构造出有利条件,加快“光声子”变成“声声子”,从而减少栅极与漏极之间热点的形成。



现在很多超导量子计算机采用毫开尔文的温度,一些科学家在进一步探索,用激光来冷却原子,从豪开尔文降低一百万倍温度到纳开尔文,接近绝对零度的温度极限,看看能不能发现更复杂的量子现象。


未来,物质的特性能不能通过计算预测出来,而不用靠漫长的试验来进行摸索?答案是可能的。例如采用USPEX计算方法,目前用100万核时的算力,可以计算出小于200个原子组成的分子的主要特性。2017年,科学家通过计算发现了超硬五硼化钨的结构,解决了困扰科学界近60年的难题;2019年科学家通过计算,发现了十氢化钍在85万个大气压的情况下,具有惊人的高温超导性,临界温度达到-112摄氏度。


有了更好的计算化学,我们有望发现或者发明更好的催化剂、化学药、生物药与疫苗。


二:拓展感知极限,更好地了解世界和人类自身



第二是我们未来将不断扩展感知世界和感知自身的能力,将从接近人类感知到超越人类感知、从替代感知到扩展和创造感知、从人类感知到机器感知。


在这方面我们要向生物界学习,大自然通过百万年甚至上亿年的进化,形成了远远超越现有机器和人的感知能力。


例如在视觉上,有些蜘蛛眼睛在物体轮廓和运动计算上远远超越了人眼,有利于快速精准捕获猎物,我想自动驾驶汽车是不是正好需要这种眼睛?


同样的还有青蛙眼睛,是高灵敏度的单光子接收机,可以在黑暗的环境下看的更清楚。


在嗅觉上,狗鼻子分辨气味的能力超过人类1000倍。



除了拓展对外部世界的感知,我们未来也能更好地感知和控制人体自身。像ECG、EEG、PPG等这些技术目前还没有系统地、便捷而又低成本地发展起来,对于人体的八大子系统的实时度量感知,我们还有很多工作要做。


通过发展新的传感器,我们将来可能实时、无感知地测量血压、血糖、心电等重要的健康参数;我们可以发展新的神经系统脑机接口、肌机接口,更好地与机器协同,将来有可能用思考来交流和工作、用思考来开车和娱乐。


我们也可以发展虚实融合数字世界新的体验,例如3D显示和虚拟触觉,以帮助在数字世界中“看得真、摸得实”。


三:探索新的计算模式与实现方式,认知世界、解决问题



第三是探索适应目标与环境的计算模式与高效实现方式,从而更好认知世界、解决问题、创造价值。


信息领域经过多年的积累,已经发展出了十几种广泛使用的计算模式,例如无线和光通信里大量使用基于快速傅里叶变换的蝶形计算模式,路由器里大量使用基于逻辑状态转移的有限状态机计算模式,AI里目前大量使用基于统计和相关的计算模式等。数学家和工程师们奋斗了这么多年,我们在计算模式上是不是已经走到了尽头?我认为还有很大的空间,例如:


在通信上:随着未来的通信系统不断走向高频、高速,我们将面临越来越多的非线性信道和非线性器件带来的问题,我们能不能从传统的线性傅里叶变换拓展到非线性逆散射变换,以更好地匹配未来的应用?



在AI上:随着应用的不断拓展,我们面临统计相关AI计算模式不可解释、不可调试的问题,同时还有很大的能效挑战。我们能不能向生物界学习,例如蚂蚁,小小的蚂蚁大脑一般只有0.2毫瓦的能耗,它既不用深度学习、也不需要遵循可计算性理论和冯·诺依曼架构,但是却能够跑来跑去做很多复杂的事情,例如筑巢、寻找食物、养蚜虫等等。目前的自动驾驶汽车还需要几十瓦甚至几百瓦来进行计算,在能效上与蚂蚁相比还有很大的差距。因此在AI领域,除了统计和相关计算模式外,能不能进一步发展出数理逻辑计算模式、几何流形计算模式、博弈计算模式等?


在科学计算上:我们大量用到矩阵,对于两个n行n列矩阵的乘法,如果按照原始简单算法,复杂度是n的3次方,1969年德国数学家创造的斯特拉森算法,将复杂度降低到n的2.807次方,2020年底MIT的Williams与哈佛的Alman给出一个复杂度是n的2.3728596次方算法。


在矩阵计算中:我们更关心稀疏线性方程组求解,因为在社会科学中,地球上有几十亿人,平均每个人只维持不超过200个有效关系;在芯片设计中,大部分元件的限制条件是局部的。在这个领域,佐治亚理工大学的彭泱等人发明了计算复杂度为n的2.3316次方的先进算法,获得了计算理论顶会SODA的2021年最佳论文奖。几个月前我们的数学家发明了一个更新的算法,将复杂度下降到n的2.28次方,比彭泱等人的算法降低了0.0516次方,这个进步意味着什么呢?对n=100万来说,计算复杂度将能进一步下降约45%。


在具体实现上,超级计算机往往要用巨大的能耗来实现大算力,例如3千万瓦实现近500PFLOPS算力,而人脑大约用20W可以做到近30PFLOPS,效率高了约八万倍。


从这个角度看,我们是不是要发展适应性与高效性计算模式,创造新架构与新部件,而不要受限于传统的可计算性理论、以及冯·诺依曼架构?


四:突破香农定律的假设,在更大的时空中发展信息通信



第四是在有别于香农定律的假设、以及更大的时空中探索信息通信,从而跨越空间的障碍,建设全球直达的能力,连接虚拟与现实世界、以及无处不在的机器。


将来的真人级全息通讯,如果不压缩数据,需要接近2Tbps的带宽,以及1-5ms的时延;


自动驾驶如果采用12个摄像头,每天可能产生高达4T字节的数据,目前的5G网络远远达不到这个容量。


对于这些挑战,我们是不是有足够的理论和技术来实现呢?我认为这是可能的。


例如,在理论上,如果我们假设这个世界是有先验知识、有记忆的,就可能跳出香农1/2/3定律的限制。在工程上,一个量子级联激光器可以同时产生几百个波长,实现上百T的流量;未来如果我们能做出高重频阿秒激光器,甚至可能产生百万T的流量。这些技术如果能嫁接到无线和光领域,是不是可以成千上万倍提升通信性能?


5、打通科学假设与商业愿景,创造知识与价值


为了打通科学假设与商业愿景,我们把创新分成前后相关的5个环节:从假设和愿景,到理论、技术和商业创新。


越靠近后端商业、客户和用户的创新,效果就越明显;而越靠近前端假设、愿景和基础科学,就越需要耐心。


面向未来,我们要敢于向前端基础研究寻求答案。


在基础科学研究上,除了支持以科学家兴趣驱动的“波尔象限”创新外,我们希望与伙伴一起探索“巴斯德象限”创新,这样既能拓展科学认知,也能创造应用价值。


6、面向未来的10个问题和挑战



围绕前面4个假设与愿景,聚焦“巴斯德象限”,我们提炼出面向未来可以重点考虑的两个基础科学问题,以及8个前沿技术挑战。


第一个科学问题是机器如何认知世界,能不能建立适合机器理解世界的模型?


第二个科学问题是如何理解人的生理学模型,尤其人体八大子系统的运行机制,以及人的意图和智能?


前沿技术挑战包括:

1.在人机接口上如何发展新的感知和控制能力,例如脑机和肌机接口、3D显示、虚拟触觉、嗅觉、味觉等等

2.在健康上如何连续地、无感知地测量人的血压、血糖和心电?能不能通过AI强人工智能帮助发明新的化学药、生物药和疫苗?

3.在软件上如何发展以应用为中心,面向价值与体验的高效率自动化和智能化软件?

4.在通信上如何接近和扩展香农极限,实现区域级和全球级的高效、高性能连接?

5.在计算上如何发展适应性与高效率的计算模式、发展非冯·诺伊曼计算架构与非传统部件、发展可解释和可调试AI?

6.在材料上,如何通过AI帮助发明新的分子、催化剂和器件?

7.在制造上如何发展出超越传统CMOS制造的技术,达到更低成本、更高的效率?

8.在能源上能不能发展出安全、高效的能源转换和储能,提供按需服务?


7、最大的力是合力,最强的智是众智



华为正以开放的心态,与全世界伙伴一起创造。


今天,我们对数字技术的所有想象都是保守的



三十年前,我在大学的时候,还需要排长队来打长途电话,完全无法想象有一天能够拿着一个小盒子,不需要任何连线就可以随时随地与远方的家人视频沟通,可以通过这个小盒子可以连接世界,干很多事情,这在当时太科幻了。


我们现在对于未来的所有想象可能都是保守的,因此我们要更加勇敢,希望能和学术界、产业界一起,重构基础理论、重构架构、重构软件,共同探索、开创未来!


谢谢大家!



您对本文有什么看法?欢迎在传感器专家网本内容底下留言讨论,或在中国最大的传感社区:传感交流圈中进行交流。

您觉得本篇内容如何
评分

相关产品

Honeywell 霍尼韦尔智能工业 在线/便携烟气分析仪专用传感器 气体传感器

CO 传感器;SO2传感器;NO2 传感器;NO传感器;氧气传感器

南方泰科 TGM 压力传感器

TGM是一款SOP8封装的压阻式MEMS压力传感器,其压力传感器芯片封装在 SOP8 塑封壳内。在传感器压力量程内,当用固定电压供电时,传感器产生毫伏输出电压,正比于输入压力。压力传感器芯片为绝压,可提供不同的压力量程的SOP8 压力传感器。

Huba Control 富巴 526系列 压力传感器

526系列压力传感器采用集公司20多年研发经验的陶瓷压力传感器芯片技术。该系列压力传感器可选压力范围大,电气连接形式多。最小量程为100mbar。大批量使用具有很好的性价比。

Cubic 四方光电 PM3009BP 室外粉尘传感器

PM3009BP是一款专门针对餐饮油烟监测的油烟传感器,其采用旁流采样方式,自带除水雾装置,结合智能颗粒物识别算法,确保传感器能够快速准确的检测油烟浓度的变化,同时创新的镜头自清洁技术的应用,能够长效防护传感器油烟污染,大幅度延长传感器的使用寿命。

Winsen 炜盛科技 MH-410D 红外CO2气体传感器 红外传感器

MH-410D红外气体传感器是通用型、智能型、微型传感器,该红外传感器利用非色散红外(NDIR)原理对空气中存在的CO2进行探测,具有很好的选择性,无氧气依赖性,性能稳定、寿命长。内置温度补偿。该红外传感器是通过将成熟的红外吸收气体检测技术与微型机械加工、精良电路设计紧密结合而制作出的小巧型高性能红外传感器。该红外传感器可广泛应用于暖通制冷与室内空气质量监控、工业过程及安全防护监控、农业及畜牧业生产过程监控。

Alliance 莱恩&联众传感线缆 Aurora Tool Cable 医疗电线 医疗线缆

用于连接两个5DOF传感器或一个6DOF传感器的电缆。 可重复使用 用于电磁跟踪系统

RAYCOH 锐科智能 30GM系列 IO-Link输出 2EP-IO,IUEP-IO 超声波测距传感器和接近开关

RAYCOH 锐科智能30GM系列 IO-Link输出 超声波线性位置传感器和开关

评论

您需要登录才可以回复|注册

提交评论

传感器专家网

传感器行业综合服务平台,立志于建设便捷方便的传感器选型器、行业专业媒体

关注

点击进入下一篇

2020年自动驾驶技术还有多远?

提取码
复制提取码
点击跳转至百度网盘